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ABSTRACT

Measurements have been made of the efficiency in detecting gamma

rays of a O. 3-mm, a 3-mm, and a 5-mm silicon detector covered with

different ab sorber s. Calibrated source s covering the range from 279 ke V

to 2.75 MeV were used. The need for the absorbers in order to obtain

meaningful results and their contribution to the response of the detectors

at electron biases from 50 to 200 keV are discussed in detail. It will be

shown that the re sults are virtually independent of the atomic number of the

absorber. In addition, the role of the absorber in increasing the efficiency

with inc reasing photon energy for low bias settings is demonstrated for the

O. 3-mm crystal. Qualitative explanations are given for the shapes of all

curves of efficiency versus energy at each bias.
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Introduction

Silicon detectors are designed ll1ainly for charged-particle work.

NUll1erous ll1easurell1ents and calculations have been ll1ade to study their

response to electrons (1..-4); however, there seell1S to have been no COll1-

prehensive effort of a sill1ilar nature with re spect to gall1ll1a rays. This

report presents the results of an experill1ental investigation of the response

of three covered silicon detectors (0.3-, 3-, and 5-ll1ll1 thick) to ll1onoener-

getic gall1ll1a rays with energies froll1 279 keY to 2.75 MeV. The covers

used were Lucite, alull1inull1, copper, and lead. The need for a cover and

the conclusions which can be drawn froll1 the use of different covers will be

discussed. Representative results and their interpretation will be presented

here. a

Silicon detectors have been used routinely as a laboratory instrull1ent

for a nUll1ber of years. Their advantages over other conventional charged-

particle detectors are significant. The density is high cOll1pared with gas

counters; the energy required to produce an electron-hole pair is low

(3.6 eV/pair); their resolution is very narrow (typically about 25 to 40 keV)

and virtually independent of energy.

They have been used extensively as charged- particle detectors in

nUll1erous flights in the U.S. space prograll1. It is alll10st certain that future

long-range flights will use radioisotope therll10electric generators (R TGs)

to provide the power for science packages. These R TGs use Pu02 that con­

tains about 80% 238 pu as the heat source. The background of the silicon

detectors can be expected to rise due to: the gall1ll1a rays arising froll1 the

d f 238p 239 p d 21 N d d" h t"" 180 22ecay 0 u, u, an e pro uce in t e Q' -n reac ion in ; Ne

resulting froll1 the Q'-n reaction with the ill1purity

froll1 the decay of 236 pu, an ill1purity in the fuel.

JPL Technical Mell1orandUll1 33-524
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five-year-old 2000- W R TG will emit radiation equivalent to a gamma source

of about 8. 25 X 10 8 disintegrations/s in the 700-keV region. In addition,

there will be a buildup of 228 Th with a decay rate of about 1. 85 X 10
9

dis-

integrations/so This decays very quickly with gaITlma emission primarily

212 212. 208from Pb, Bl, and Tl. One may expect that these gaITlma rays will

result in an increase in the background of charged-particle detectors placed

in the vicinity of the R TG.

Experimental Method

The electronics consisted of a charge- sensitive preamplifier, ampli­

fier, discriminator, and scaler. The 5. 305-MeV Q' particle of 210po was

used for energy calibration. The error resulting from the pulse-height

defect in silicon (~) is negligible for 5.3 MeV Q' particles.

All the detectors were 2 cm2 in area and were about 25 cm from the

source, with the plane of the silicon normal to the source vector. The detec-

tors were wrapped in several layers of 0.0013 cm (0. 5 mil) aluminized Mylar

to exclude light. The O. 3-mm one was fully depleted; the 3- and 5-mm ones

were lithium drifted.

203 137
The sources used were Hg (E y = 0.279 MeV), Cs (E y =

0.662 Me V), 54Mn (Ey = 0.835 Me V), 60Co (E = 1. 25 Me V), and
y, aver

24Na (E
y

= 1. 37 and 2.75 MeV). They were calibrated with an accuracy of

about 3% using a Ge(Li) crystal (.§).

It is virtually impossible to obtain monoenergetic gamma- ray sources

of convenient energies with no accompanying electrons. The calibrated

sources used in these measurements were covered with O. 025 cm Mylar,

which is thinner than the range of the electrons emitted. The problem is

complicated by the fact that the detectors used are virtually transparent to

gamma rays. Electrons, however, cannot traverse the silicon without

depositing some energy. There is also the contribution of electrons arising

2 JPL Technical Memorandum 33-524



from the scattering of gamma rays in the walls and other material in the

vicinity of the detector. The accurate evaluation of all these effects is a

b
practical impossibility. For instance, Monte Carlo calculations show that a

change in the internal conversion coefficient of only 0.03% will increase the

counting rate of a O. 3-mm detector by about 10 to 15%. The uncertainty in

the measurement of an internal conversion coefficient as small as O. 03% may

be as high as 50%. This can easily cause a prohibitively large error in the

sensitivity. The same argument holds for the shape and intensity of the

various groups of the f3 spectra. This entire problem can be eliminated by

placing an absorber directly in front of the detector. If the absorber is

thicker than the range of all electrons originating in the source or created

in the room by Compton scattering of the gammas, the detector will be

effectively shielded from these electrons. Additional free electrons are

created in the absorber, and many of them reach the silicon and contribute

to the efficiency; however, the geometry is localized, the uncertainties in

the source electron intensities are eliminated, and the physics of gamma

interaction and electron transport are the same for the absorber and detec­

tor. Thus, no additional complexities are introduced. In addition, if the

absorber is thicker than the range of the maximum energy electrons created

the re, and if a small correction is made for the gamma attenuation in the

absorber, the efficiency of the system is independent of the thickness.

(This assumes that the diameter is large compared with the thickness.) The

efficiency with this technique is due to the combined effects of interaction in

the absorber as well as the detector. c

Runs were also made with the absorber on both sides of the detector.

Although this has no intrinsic value in arriving at an understanding of the

physics involved (it is safe to assume that the introduction of a material

JPL Technical Memorandum 33-524 3
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which increases the albedo should, in most cases, raise the counting rate),

it simulates more realistically a condition which might be encountered

aboard a spacecraft.

Results

In most of the cases, the attenuation of the photon beam by the

203
absorber is small. The 279-keV gamma rays of Hg on the lead absorber

is a notable exception. The data in the tables have been corrected to zero

absorber thickness. This assumes an absorber wh ich can stop all source

electrons, is thicker than the range of electrons produced at its front sur-

face, but does not attenuate the gamma beam from the source. Although it

is an artificial condition, it eliminates the additional effect of gamma

shielding, which is of no interest in this paper.

In order to view the data properly, it is essential to consider the

absorber as an integral part of the counter. In addition to stopping electrons

from the source, it generates free electrons, many of which reach the sili-

con and are counted. The O. 3-mm silicon detector is thinner than the range

of the maximum energy electrons produced by the gammas in these measure­

203
ments, except for the case of Hg. Monte Carlo calculations show that the

absorbers, which are much thicker than the O. 3-mm detector, make a

greater contribution to the efficiency than the silicon.

Tables I and II present the measured efficiencies, E, in counts per

10
3

photons incident on aluminum- and lead-covered detectors. The errors

include the counting errors, the source calibration errors, and a 2% error

resulting from an assumed 1% error in distance measurements. The errors

at 2.754 MeV include an additional estimated error of about 3%, resulting

from the subtraction of the efficiency of the 1.37- Me V gamma of 24Na .

The measurements performed by Endres, et al., (~) were very similar to

JPL Technical Memorandum 33-524



those described in this report and need no elaboration. The errors in their

values are about 5%. Figure 1 gives the 0.3- and 5-mm data of E versus E at

different biases for aluminum covers. The curves for the other covers

exhibit the same general behavior. Figures 2 and 3 show E for the 0.3- and

5-mrn at 75 and 200-keV bias for all absorbers. (Corresponding plots of the

3-mm data are very similar to the 5-mm results and are not shown. Fig­

ures 1 to 3 show the data for the sandwiched detectors only. )

Several features of the O. 3-mm results are immediately obvious in

Fig. 1. The efficiency increases rapidly with energy except for the 200-KeV

bias case where it ultimately becomes flat. The results at lower biases are

readily understandable. As the gamma-ray energy increases, the Compton

electron energy increases. The electrons can penetrate a greater thickness

of absorber. The detector, which includes the absorber., has a larger effec­

tive volume and more electrons generated in the absorber can reach the

silicon. This enhancement of the efficiency more than compensates for the

reduction of the Compton cross section. The fact that the curves ultimately

get flat for the 200-keV bias is probably the result of more subtle effects.

More of the absorber can be considered as a part of the counter as the

energy increases from 1. 25 to 2.75 MeV; however, the angular distribution

of Compton electrons is peaked much more in the forward direction at

2.75 MeV. This means that a larger fraction of electrons enter the silicon

in a near-normal direction. Monte Carlo calculations performed for

500-keV electrons entering a O. 3-mm silicon detector in a normal direction

show that less than 20% of the electrons lose more than 200 keY of energy

in the detector. This fraction would be much smaller for forward scattered

electrons from a 2. 75-MeV photon than a 1.25 MeV source. A large per­

centage of electrons created in the side of the aluminum close to the

JPL Technical Memorandum 33-524 5



detector would not deposit 200-ke V energy in the silicon. In addition, fewer

of the Compton events in the silicon would produce a count at a 200-keV bias.

The absorber on the back side of the detector produces several

effects. On the one hand, it prevents free electrons created in the room

from entering the back side of the detector. On the other hand photons from

the source incident on the back absorber can create electrons that may get

into the detector. If the interaction is a Compton event, the electrons will

be produced in a forward direction (away from the detector) and will prob-

ably not be detected. (A small percentage will be reflected from the back

absorber to the detector.) If the event is a photoelectric or pair process,

we can expect more electrons in the backward direction (toward the detector)

and an enhancement of the efficiency. This effect is seen in Table II with

the lead absorber. It is less prominent in the aluminum and lucite absorber.

It is seen in the copper absorber mainly at 2. 75 MeV.

A striking feature discernible from an inspection of Figures 2 and 3

is the relative independence of response on the atomic number of the cover.

This result is not surprising. In addition to shielding electrons emitted by

the source, all covers were made thicker than the range of the maximum

energy electrons that could be produced by photon interactions in the

absorber. For all cases, except lead, the only electron production process

of any consequence is by Compton collision. The cross section for this is

proportional to the atomic number, Z. The expression for electron energy

loss is very close to being proportional to Z, i. e., ~ Z In l/Z. The proba-

bility of a photon interacting in the absorber to produce an electron which

reaches the detector is

weakly dependent on Z.

proportional to (J /(dE/dx), which is only very
comp

Lead is an exception because the probability of the

6

photoelectric or pair process in lead for the gamma-ray energies used in

JPL Technical Mem.orandum. 33-524



these measurements is not negligible and the cross section for both of these

interactions involve higher powers of Z. Indeed, the response for lead

covers is generally higher than the others.

The shape of the curves for the thick crystals is very easily under­

stood. As in the O. 3-mm case, the efficiency is almost entirely independent

of the Z of the cover. In the 3- and 5-mm case, however, the crystal has a

much greater effect than the cover in its contribution to the overall effi-

ciency of the combination. Most of the counts are due to interactions that

occur in the crystal, which is thick compared with the distance required for

an electron to travel in order to lose 200 keV'of energy. As a result the

efficiency is virtually independent of the photon energy at every bias. The

argument, used in the O. 3-mm case, that the cover appears thicker as we

increase the average energy of electrons resulting from interactions in the

cover, is still valid; however, this contribution relative to free electrons

created in the silicon, is reduced as the silicon gets thicker. Monte Carlo

calculations demonstrate explicitly the diminishing contribution of the

cover to the total efficiency.

If

E Si the energy absorbed in the -silicon from electrons

originating in the silicon

E t the energy absorbed in the silicon from electrons

originating in the silicon or the absorber

then

ES/Et :::: O. 1 for the O. 3-mm crystal at E y = 0.835 MeV

ES/E
t

::: 0.9 for the 5-mm crystal at E y = 1. 25 MeV

The value at the 279-keV gamma energy falls off abruptly, except for the

50-keV bias, because there are few Compton electrons which exceed the

bias for E y = 279 keY.

JPL Technical Memorandum 33-524 7
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Conclusions

The following conclusions may be drawn from this investigation:

(l) Meaningful results on the efficiency of silicon detectors for

gamma rays cannot be obtained unless source electrons can be

excluded from the measurement.

(2) The covers must be thick enough to absorb all source electrons

and the most energetic electrons created by gamma interaction

on the front surface of the cover. If the latter restriction is

violated, the data will be sensitive to the thickness of the cover.

(3) The efficiency is very insensitive to the Z of the cover.

(4) If most of the counts are due to free electrons created in the

cover, the efficiency increases with gamma-ray energy unless

the bias is greater than the energy electrons lose in traversing

the crystal. In the latter case a saturation effect ultimately is

seen as the photon energy is increased. If most of the counts

are due to tree electrons which originate in the silicon and if the

silicon is thick compared with the bias energy, then this effi­

ciency saturation occurs at much lower gamma-ray energies.

JPL Technical Memorandum 33-524



Footnotes

a The complete results are available and may be obtained from the

author.

b
All Monte Carlo calculations referred to in this paper were performed

using the BETA code (,1).

c This introduces a problem involving the source-to-detector distance.

The problem is trivial for a bare silicon detector which is thick com­

pared with the bias energy. In that case the center of detection is at

the center of the crystal. The center o~ detection of a system which

includes the cover and silicon can be determined by Monte Carlo

techniques; however, it was arbitrarily placed at the front surface In

the O. 3-nun case and at the center of the crystal for the two thicker

cases. The error should be small because the thickness of the entire

detector system (cover plus crystal) was small compared with the

source-to-detector distance.

JPL Technical Memorandum 33-524 9
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Fig. 1. The response of a 0.3- and 5-mm aluminum-covered silicon
detector to gamma rays
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